Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions

Identifieur interne : 003661 ( Main/Repository ); précédent : 003660; suivant : 003662

Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions

Auteurs : RBID : Pascal:10-0361377

Descripteurs français

English descriptors

Abstract

This review is intended to provide a critical and up-to-date survey of the analytical approximation methods that are encountered in interface thermal conductance. Because of the importance of the III-nitride materials for novel technological applications, these methods are applied to the thermal conductance of the interfaces between the III-nitride thin films and their commonly used substrates. The phonon behavior and the probability that a phonon transmits from the III-nitride film to the substrate are described first within the context of two limiting models for the interface thermal conductance. The acoustic mismatch model, which assumes that all the phonons incident to the interface are specularly transmitted or specularly reflected, and the diffuse mismatch model, which assumes that all the phonons incident to the interface are diffusively transmitted or diffusively reflected. We show that these two limiting models give very different results for the thermal conductance of the interface between the III-nitride films and their substrates. Next, a statistical model which describes the reflection of plane waves from rough surface is employed to discriminate between the specularly transmitted phonons and the diffusively transmitted phonons. This model predicts that a reflected plane wave leads to a plane wave in the direction of specular reflection and to a contribution with a finite angular spread about that direction depending on the tangential correlation of the surface asperities. Based upon this result, a new model for the interface thermal conductance, that interpolates between the acoustic mismatch model and the diffuse mismatch model and takes into account, instead the Debye approximation, the detailed phonon spectra of the materials in contact, is developed and applied to the interfaces GaN/Si, GaN/SiC, AlN/Si, AlN/SiC, InN/Si, and InN/SiC. In addition to the phonon wavevector, or alternatively, the phonon energy and the angles of incidence, the probability of the specular transmission and the probability of the diffuse transmissions are taken to depend on the interface roughness and the tangential correlation of the interface asperities. Generally speaking, for the case of interface with zero tangential correlation the interface thermal conductance increases with increasing the interface roughness, whereas for an interface with infinite tangential correlation the interface thermal conductance depends on the mismatch between the phonon densities of states of the materials in contact.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0361377

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions</title>
<author>
<name sortKey="Kazan, M" uniqKey="Kazan M">M. Kazan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Nanotechnologie et d'Instrumentation Optique - Institut Charles Delaunay - Université de technologie de Troyes - CNRS FRE 2848, 12 rue Marie-Curie BP2060</s1>
<s2>10010 TROYES</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">TROYES</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruyant, A" uniqKey="Bruyant A">A. Bruyant</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Nanotechnologie et d'Instrumentation Optique - Institut Charles Delaunay - Université de technologie de Troyes - CNRS FRE 2848, 12 rue Marie-Curie BP2060</s1>
<s2>10010 TROYES</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">TROYES</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Royer, P" uniqKey="Royer P">P. Royer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Laboratoire de Nanotechnologie et d'Instrumentation Optique - Institut Charles Delaunay - Université de technologie de Troyes - CNRS FRE 2848, 12 rue Marie-Curie BP2060</s1>
<s2>10010 TROYES</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">TROYES</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Masri, P" uniqKey="Masri P">P. Masri</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Groupe d'études des semi-conducteurs, CNRS-UMR 5650, Université de Montpellier 2, 12 Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0361377</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0361377 INIST</idno>
<idno type="RBID">Pascal:10-0361377</idno>
<idno type="wicri:Area/Main/Corpus">004161</idno>
<idno type="wicri:Area/Main/Repository">003661</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0167-5729</idno>
<title level="j" type="abbreviated">Surf. sci. rep.</title>
<title level="j" type="main">Surface science reports</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium nitride</term>
<term>Analytical method</term>
<term>Debye approximation</term>
<term>Gallium nitride</term>
<term>Incidence angle</term>
<term>Indium nitride</term>
<term>Interface properties</term>
<term>Phonon density of states</term>
<term>Phonon spectra</term>
<term>Plane waves</term>
<term>Reviews</term>
<term>Roughness</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Silicon carbide</term>
<term>Specular reflection</term>
<term>Statistical models</term>
<term>Thermal conductivity</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité thermique</term>
<term>Propriété interface</term>
<term>Article synthèse</term>
<term>Méthode analytique</term>
<term>Couche mince</term>
<term>Modèle statistique</term>
<term>Onde plane</term>
<term>Réflexion spéculaire</term>
<term>Approximation Debye</term>
<term>Spectre phonon</term>
<term>Nitrure de gallium</term>
<term>Semiconducteur</term>
<term>Silicium</term>
<term>Carbure de silicium</term>
<term>Nitrure d'aluminium</term>
<term>Nitrure d'indium</term>
<term>Angle incidence</term>
<term>Rugosité</term>
<term>Densité état phonon</term>
<term>GaN</term>
<term>Si</term>
<term>SiC</term>
<term>AlN</term>
<term>InN</term>
<term>7350L</term>
<term>6322</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This review is intended to provide a critical and up-to-date survey of the analytical approximation methods that are encountered in interface thermal conductance. Because of the importance of the III-nitride materials for novel technological applications, these methods are applied to the thermal conductance of the interfaces between the III-nitride thin films and their commonly used substrates. The phonon behavior and the probability that a phonon transmits from the III-nitride film to the substrate are described first within the context of two limiting models for the interface thermal conductance. The acoustic mismatch model, which assumes that all the phonons incident to the interface are specularly transmitted or specularly reflected, and the diffuse mismatch model, which assumes that all the phonons incident to the interface are diffusively transmitted or diffusively reflected. We show that these two limiting models give very different results for the thermal conductance of the interface between the III-nitride films and their substrates. Next, a statistical model which describes the reflection of plane waves from rough surface is employed to discriminate between the specularly transmitted phonons and the diffusively transmitted phonons. This model predicts that a reflected plane wave leads to a plane wave in the direction of specular reflection and to a contribution with a finite angular spread about that direction depending on the tangential correlation of the surface asperities. Based upon this result, a new model for the interface thermal conductance, that interpolates between the acoustic mismatch model and the diffuse mismatch model and takes into account, instead the Debye approximation, the detailed phonon spectra of the materials in contact, is developed and applied to the interfaces GaN/Si, GaN/SiC, AlN/Si, AlN/SiC, InN/Si, and InN/SiC. In addition to the phonon wavevector, or alternatively, the phonon energy and the angles of incidence, the probability of the specular transmission and the probability of the diffuse transmissions are taken to depend on the interface roughness and the tangential correlation of the interface asperities. Generally speaking, for the case of interface with zero tangential correlation the interface thermal conductance increases with increasing the interface roughness, whereas for an interface with infinite tangential correlation the interface thermal conductance depends on the mismatch between the phonon densities of states of the materials in contact.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-5729</s0>
</fA01>
<fA02 i1="01">
<s0>SSREDI</s0>
</fA02>
<fA03 i2="1">
<s0>Surf. sci. rep.</s0>
</fA03>
<fA05>
<s2>65</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KAZAN (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRUYANT (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ROYER (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MASRI (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Nanotechnologie et d'Instrumentation Optique - Institut Charles Delaunay - Université de technologie de Troyes - CNRS FRE 2848, 12 rue Marie-Curie BP2060</s1>
<s2>10010 TROYES</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Groupe d'études des semi-conducteurs, CNRS-UMR 5650, Université de Montpellier 2, 12 Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>111-127</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12426R</s2>
<s5>354000189680090010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>64 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0361377</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Surface science reports</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This review is intended to provide a critical and up-to-date survey of the analytical approximation methods that are encountered in interface thermal conductance. Because of the importance of the III-nitride materials for novel technological applications, these methods are applied to the thermal conductance of the interfaces between the III-nitride thin films and their commonly used substrates. The phonon behavior and the probability that a phonon transmits from the III-nitride film to the substrate are described first within the context of two limiting models for the interface thermal conductance. The acoustic mismatch model, which assumes that all the phonons incident to the interface are specularly transmitted or specularly reflected, and the diffuse mismatch model, which assumes that all the phonons incident to the interface are diffusively transmitted or diffusively reflected. We show that these two limiting models give very different results for the thermal conductance of the interface between the III-nitride films and their substrates. Next, a statistical model which describes the reflection of plane waves from rough surface is employed to discriminate between the specularly transmitted phonons and the diffusively transmitted phonons. This model predicts that a reflected plane wave leads to a plane wave in the direction of specular reflection and to a contribution with a finite angular spread about that direction depending on the tangential correlation of the surface asperities. Based upon this result, a new model for the interface thermal conductance, that interpolates between the acoustic mismatch model and the diffuse mismatch model and takes into account, instead the Debye approximation, the detailed phonon spectra of the materials in contact, is developed and applied to the interfaces GaN/Si, GaN/SiC, AlN/Si, AlN/SiC, InN/Si, and InN/SiC. In addition to the phonon wavevector, or alternatively, the phonon energy and the angles of incidence, the probability of the specular transmission and the probability of the diffuse transmissions are taken to depend on the interface roughness and the tangential correlation of the interface asperities. Generally speaking, for the case of interface with zero tangential correlation the interface thermal conductance increases with increasing the interface roughness, whereas for an interface with infinite tangential correlation the interface thermal conductance depends on the mismatch between the phonon densities of states of the materials in contact.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60C22</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété interface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Interface properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad interfase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Modèle statistique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Statistical models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Onde plane</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Plane waves</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réflexion spéculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Specular reflection</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Reflexión especular</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Approximation Debye</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Debye approximation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aproximación Debye</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre phonon</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Phonon spectra</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Carbure de silicium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Silicon carbide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Silicio carburo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'aluminium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Aluminium nitride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aluminio nitruro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Angle incidence</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Incidence angle</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Densité état phonon</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Phonon density of states</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Densidad estado fotón</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>SiC</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>AlN</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7350L</s0>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6322</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>14</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>14</s5>
</fC07>
<fN21>
<s1>228</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003661 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003661 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0361377
   |texte=   Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024